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Abstract—Software repositories such as revision control sys-
tems and bug tracking systems are usually used to manage
the changes of software projects. During software maintenance
and evolution, software developers and stakeholders need to
investigate these repositories to identify what tasks were worked
on in a particular time interval and how much effort was
devoted to them. A typical way of mining software repositories
is to use topic analysis models, e.g., Latent Dirichlet Allocation
(LDA), to identify and organize the underlying structure in
software documents to understand the evolution of development
topics. These previously LDA-based topic analysis models can
capture either changes on the strength (popularity) of various
development topics over time (i.e., strength evolution) or changes
in the content (the words that form the topic) of existing topics
over time (i.e., content evolution). Unfortunately, few techniques
can capture both strength and content evolution simultaneously.
However, both pieces of information are necessary for developers
to fully understand how software evolves. In this paper, we
propose a novel approach to analyze commit messages within a
project’s lifetime to capture both strength and content evolution
simultaneously via Online Latent Dirichlet Allocation (On-Line
LDA). Moreover, the proposed approach also provides an efficient
way to detect emerging topics in real development iteration when
a new feature request arrives at a particular time, thus helping
project stakeholds progress their projects smoothly.

I. INTRODUCTION

As the development of a software project progresses, its
complexity grows accordingly, making it difficult to under-
stand and maintain. During software maintenance and evolu-
tion, software developers and stakeholders often seek ways
to know the history and evolution of certain aspects of the
system to help understand software development. For example,
project managers can understand what tasks have recently
been working on and how much effort has been devoted to
each task by retrieving revision control systems [1], [2], while
developers can understand the evolution of certain features of
source code by mining source code repository [3], [4].

However, statistical results showed that about 80% of the
data in software repositories is unstructured (in the form of
natural language text) [5], [6]. This leads to some fundamental
challenges in mining software repositories because unstruc-
tured data is often unlabeled, vague, and noisy [7]. One of
recent advanced techniques is to use topic analysis models,
such as Latent Dirichlet Allocation (LDA) [8], to automatically
extract topics from textual repositories to explore and organize
the underlying structure of software documents. Based on topic
analysis, software documents are represented by a mixture

of topics and each topic is represented by a set of tokens
extracted from corresponding documents. These tokens co-
occur frequently in the entire corpus and usually have a close
sematic relationship. Ideally, these extracted topics correlate
well with actual themes in software development such as
features in source code and development activities in commit
messages, thus providing a simple way for project stakeholders
to quickly understand software artifacts.

In the past, several LDA-based approaches have been pro-
posed to aid developers in understanding software evolution.
Thomas et al. applied the Hall Model [9] to analyze the history
of source code documents to discover and monitor the drift of
topics in source code [4], [10]. They applied LDA to all of the
versions of the system at once, then mapped the topics back
to individual version of the system. They computed several
topic metrics (e.g., assignment or weight [11]) to represent
the strength (popularity) of a topic for each version. In this
way, the evolution of the strength of a topic (ideally correlates
with real features in source code) can be monitored. However,
the content (words that form a topic) of a topic never changes
across the versions, which rarely occurs in practical software
evolution. On the other hand, in order to monitor the day-
to-day development activities, Hindle et al. applied the Link
Model [12] to mine the history of commit messages to recover
the development topics during a time interval [1]. They applied
LDA to each time window of the corpus separately, then
linked topics in different time windows together according
to a similarity measure (for example, topics that share 8 out
of 10 words across successive time windows). In this way,
the evolving stream of development topics over time can be
monitored by the change of the content of topics over time.
However, the strength of a topic across all time windows could
not be recovered which is also not fit for the practical fact
during software evolution.

As discussed above, none of existing techniques can capture
both strength and content evolution simultaneously. However,
both pieces of information are necessary for developers to
fully understand how software evolves. For example, project
managers may hope to know how much work was related
to feature A at a certain time period, which can be obtained
by computing the corresponding topic strength at that time.
What’s more, they might also have the request to know what
kind of work was done for feature A at a particular time point.
Only the topic strength will not help project managers work



on this task. Instead, the content of the corresponding topic
can shed light on activities that are performed for feature A at
that time point.

To fill this gap, we propose a novel approach to capture both
topic strength and content evolution of development topics
simultaneously. We apply Online Latent Dirichlet Allocation
(On-Line LDA) [13], which is an online version of LDA
that incrementally builds an up-to-date model (mixture of
topics per document and mixture of words per topic) when
a set of new documents appears in the commit messages of a
software repository. In order to monitor how much effort has
been devoted to each development topic at a ceratin time, we
measure the strength (popularity) of the corresponding topic
by computing Normalized-Assignment metric at each time
window and map the values to timestamps to represent topic
strength evolution. Meanwhile, in order to better understand
the detailed information of each development activity and its
evolution, we track the content (words that form the topic)
of the corresponding topics over time to capture topic content
evolution. In addition, during real development iteration, new
features and requests frequently appear to become emerging
topics, old features and requests will disappear and become
outliers. Automatically detecting these emerging topics can
provide a meaningful view for project managers to monitor
the progress of their project. By computing topic similarity
measure (e.g., KL divergence [14]) based on the evolution
matrix generated by On-Line LDA, these emerging topics
can be easily detected. Compared with previously LDA-based
approaches, the main advantages of our approach are listed as
follows:

• We capture software evolution from the perspective of
both topic strength and content evolution, thus providing
a more complete and comprehensive view of software
evolution.

• Rather than detecting what topics are relevant across
time windows [1], we detect emerging topics at the time
of their arrival, which is novel and different from the
previous work.

• By applying On-Line LDA, the current model is incre-
mentally updated according to the information inferred
from the new set of data with no need to access the previ-
ously processed documents, which improves its memory
usage and time complexity.

II. BACKGROUND AND NOTATION

In this section, we introduce the related topic analysis
models and revision control system. A glossary of notations
used in this paper is shown in Table I.

A. LDA

Latent Dirichlet Allocation (LDA) is a probabilistic tech-
nique that has been successfully used to extract the latent
topics to describe a corpus of text documents [8] . The main
idea behind LDA is that it models each document as a multi-
membership mixture of K corpus-wide topics, and each topic
as a multi-membership mixture of the terms in the corpus

TABLE I
NOTATION USED IN THE PAPER

SYMBOL DESCRIPTION
K number of topics
N total number of unique words
Nd number of words in document d
δ size of sliding window
St a stream of documents arriving at time t
Mt number of documents arriving at time t
wtdi the unique word associated with the ith token in

document d at time t
ztk the topic with index k at time t
θtd the multinomial distribution of topics specific to

the document d at time t
φtk the multinomial distribution of words specific to

the topic k at time t
αtd K-vector of priors for document d at time t
βtk N-vector of priors for topic k at time t
Btk N × δ evolution matrix of topic k with columns

= φik, i ∈ {t− δ, ..., t}
ωδ δ-vector of weights of φi ∈ {t− δ, ..., t}

vocabulary. This means that there is a set of topics to describe
the entire corpus and each document is composed of one or
more topics. Each term in the vocabulary can be contained in
more than one of these topics. Hence, LDA is able to discover
a set of ideas or themes that well describe the entire corpus.

LDA is a fully generative model that describes how doc-
uments are created. Informally stated, this generative model
makes the assumption that the corpus contains a set of K
corpus-wide topics, and each document is composed of various
combinations of these topics. Each term in each document
comes from one of the topics in the document. This generative
model is formulated as follows:

• Choose a topic vector θd ∼ Dirichlet(αd)
• Choose a word vector φk ∼ Dirichlet(βk)
• For each word wi in each document d:

– Draw a topic zk ∼Multinomial(θd); (p(zi|α))
– Draw a word wi ∼Multinomial(φk); (p(wi|zk, β))

Here, α and β are the priors for document-topic distributions
and topic-word distributions respectively. A lot of estimation
strategies for α and β, such as Gibbs sampling [15], are
proposed in the machine learning literature.

B. On-Line LDA

On-Line LDA [13] is a topic model that automatically
captures the underlying themes of text streams and their
changes over time. It is an online version of LDA that
incrementally builds an up-to-date model (mixture of topics
per document and mixture of words per topic) when a set of
new documents appears. On-Line LDA considers the temporal
ordering information and assumes that the documents are
divided by time slices. At each time slice, a topic model
with K components is used to model the incoming documents.
The generated model, at a give time, is used as prior for
LDA at a successive time slice, when a new data stream is
available for processing. Therefore, On-Line LDA allows to
incorporate inferred semantics from the past data to guide the



inference process of the upcoming streams. This is achieved
by considering all the topic-word distributions learned within a
sliding ”history window” when constructing the current priors.

To formulate the problem, let Btk denote an evolutionary
matrix of topic k in which the columns are the topic-word
distribution φjk, which is generated for streams received within
the time specified by the sliding history window δ, i.e.,
j ∈ {t − δ, ..., t}. Let ω be a vector of δ weights, each
of which is associated with a time slice from the past to
determine its contribution in computing the priors for stream
St+1. We assume that the sum of history weights

∑δ
t=1 ω

t

is equal to one. Hence, the parameters of a topic at time
t + 1 are determined by a weighted mixture of the topic’s
past distributions as follows:

βt+1
k = Btkω (1)

Under this definition of β, topic distributions in consecutive
models are aligned so that the evolution of topics in a
sequential corpus is captured. Thus, the generative model for
time slice t is formulated as follows:

• For each document d
– Draw θtd ∼ Dirichlet(αt)

• For each topic k = 1, ...,K

– Compute βtk = Bt−1
k ω

– Draw φtk ∼ Dirichlet(βtk)
• For each word wi in document d

– Draw zk ∼Multinomial(θtd); (p(zk|αt))
– Draw wi ∼Multinomial(φk); (p(wi|zk, βtk))

When time slice=1, the topic parameter, φ1k, is drawn from
a Dirichlet prior, Dir(β1

k), where β1
k is initialized to be a

constant, b, as done in the original LDA modeling [15].

C. Revision Control System

In this paper, the unstructured software repository to be
analyzed is revision control system. A revision control system
maintains and records the history of changes. Typically, devel-
opers use revision control systems to maintain the activities
performed in their project. Most revision control systems
(including CVS [16], SVN [17], and Git [18]) allow developers
to enter a commit message when they commit a change into
the repository, describing the change at a high level, i.e., who
changed what and when. These unstructured commit messages
are of grate value because they record the history of changes
during the iterative development of a software project, thus
describing how the project is evolving over time.

In this paper, our focus is to aid developers in monitoring the
day-to-day development activities (e.g., what task has currently
been working on and how it changes). Since the history of
commit messages records the development activities com-
mitted by developers, meaningful and practical development
topics can be extracted from such a repository. Meanwhile,
when dividing the history of commit messages by time slices
(e.g., a month, a season, or a year), it is much similar like a
text stream for On-Line LDA to analyze the evolving themes.

Fig. 1. The general steps for our approach

III. APPROACH

Figure 1 depicts the general process of our approach. First,
commit messages are divided by time slices. Second, several
data preprocessing operations are applied when a set of new
messages arrives. Once the data is preprocessed, we apply
On-Line LDA to construct the model. Finally, we measure
the topic strength and content evolution, and detect emerging
topics based on the On-Line LDA model.

A. Commit Messages Divided by Time Slices

The commit messages, which are ordered by their commit
time, are included in a corpus with timestamps. We cannot
apply On-Line LDA at the arrival of just one commit message
because the granularity is too fine. Also, we cannot apply On-
Line LDA until one year’s accumulative commit messages
come, in this situation, the granularity is too coarse. So
choosing the optimal time slice is an essential task for On-
Line LDA to infer meaningful topics. In our approach, we
choose one month as the default time slice because it is smaller
than the time between minor releases but large enough to have
many commits to analyze [1].

B. NLP-based Preprocessing

We cannot apply On-Line LDA when a set of new docu-
ments appears without any preprocessing operations because
there does exist some noise in the unstructured commit mes-
sages, which will confuse and distract the topic analysis tools.
Natural language preprocessing (NLP) techniques are usually
used to perform one or more preprocessing operations before
applying topic models to reduce noise and improve the quality
of the resulting text [19].

We preprocess the commit messages by applying typical
natural language preprocessing operations. We first split the
original commit messages into tokens and remove unrelated
and unimportant words, such as the punctuation, numeric
characters (e.g., @, *, !). We also remove common English
language stop words (e.g., the, it, in) to reduce noise. Then,
we stem each word to its original format (e.g., ”replaced”



becomes ”replac”) to reduce vocabulary size. Finally, we prune
the vocabulary by removing overly rare words (those that occur
in less than ε times, which is a threshold relying on the size
and type of the corpus) because these words are of little use
for topic analysis.

C. Topic Strength and Content Evolution

Once we have a set of newly arrived and preprocessed
commit messages, we apply On-Line LDA to extract K topics.
We note that On-Line LDA is incrementally updated according
to the information inferred from the new stream of data with
no need to access the previously processed documents, which
improves its memory usage and time complexity.

In order to answer the questions such as How much effort
has been devoted to feature A during project development iter-
ation, we track the strength (popularity) of the corresponding
topics as a function of time. We quantify and measure how the
topic strength changes over time by computing a Normalized-
Assignment (NA) metric at each time point. The NA of the
topic is the average value of the topic memberships of all
documents in that topic at a time, which indicates the total
presence of the topics throughout the messages in that time.
A higher NA means that a large portion of the messages (i.e., a
large portion of the development activities) is relevant to that
topic. We define NA of topic zk at time t as

NA(ztk) =

∑Mt

d=1 θ
t
d[k]

M t
(2)

The strength evoluton (SE) of a topic zk is a time-indexed
vector of NA values for that topic

SE(zk) = [NA(z1k), NA(z
2
k), · · · , NA(ztk))] (3)

Having only the evolution of the effort devoted to a certain
feature is far from enough, the detailed information about that
feature may also experience changes over time. For example,
most development activities may be focused on fixing bug A
at time t. However, due to some reasons, the focus moves
to fixing bug B at time t+1. In this situation, automatically
detecting the dynamic changing content of topic fixing bug
can shed light on the detailed activities that are performed for
this task. We can track the change of the detailed information
of a development activity by exploring the content evolution
of corresponding topic k. We define the content of a topic k by
using the top 10 most frequent words sorted by the topic word
distribution φk because in that distribution, word memberships
with high probability have a strong relationship with that topic.
Further, the content evolution of a topic k can be viewed as
the changed top 10 most frequent words according to φjk, j ∈
{1, 2, ..., t}.

D. Emerging Topics Detection

In real project’s iterative development process, new features
and requests frequently appear as emerging topics, meanwhile,
old features and requests frequently disappear and gradual-
ly become outliers. Automatically detecting these emerging
topics can provide a meaningful view for project managers

to monitor their project’s progress. For example, there is an
urgent request A that arrives at time t for developers to resolve.
If the project progresses smoothly, the activities related to
that request ought to be reflected in the commit messages (so
do the extracted development topics) at that time. Otherwise,
the project managers may wonder what tasks developers are
currently working on. Automatically detecting these emerging
topics can help managers ease such a task.

In our approach, we detect emerging topics by computing
topic similarity measure (i.e., KL divergence [14]) based on
the evolution matrix Btk generated by On-Line LDA incre-
mentally. The idea is to compute dissimilarity between two
topics, which are tied and aligned across successive time (i.e.,
two continuous columns in Btk). If the dissimilarity exceeds a
pre-determined threshold, the topic at later time is considered
as an emerging topic. The dissimilarity between two topic
distributions, p and q, can be computed by using Kullback
Leibler (KL) divergence

KL(p ‖ q) =
∑
i

p(i)log
p(i)

q(i)
(4)

KL divergence is not a real metric, since it is not symmetric.
Thus, in our work, we compute the average value between
KL(p ‖ q) and KL(q ‖ p) and denote it as KL distance
(DKL)

DKL(p ‖ q) =
KL(p ‖ q) +KL(q ‖ p)

2
(5)

Thus, to determine whether the topic k arriving at time j
(i.e., zjk) is an emerging topic, we compute the dissimilarity
between Btk(:, j) (i.e., φjk) and Btk(:, j − 1) (i.e., φj−1

k ), i.e.,
DKL(B

t
k(:, j) ‖ Btk(:, j − 1)). If the dissimilarity is bigger

than a pre-defined threshold, topic zjk will be merged into the
emerging topic list. With the help of this information, project
managers can be notified when new tasks occur in project
development process. If current emerging topics correlate with
real new tasks, project is progressing smoothly. Otherwise,
project managers need to check what is the current focus of
the project or what hampers the project.

IV. EVALUATION PLAN

The purpose of our approach is to aid project managers and
stakeholders in understanding and monitoring the evolution of
development activities. We are planning a set of exploratory
and descriptive case studies aiming at the efficiency and
effectiveness of the proposed approach. The following research
questions of our approach will be studied.

RQ1 How well does the discovered topic evolution cor-
respond to actual development activities reflected in
commit messages?

RQ2 How well do the detected emerging topics at each
time slice correspond to novel development activities
that are different from pervious ones?

RQ3 Can our approach provide a more complete and com-
prehensive view of software evolution than previous
approaches?



For RQ1, we wish to determine whether the discovered
topic strength and content evolution correspond to real changes
in commit messages. We will conduct some empirical case
studies on several real software systems (e.g., jEdit and
PostgreSQL). We will choose a random subset of time slices
and explore the extracted topics at each time. Also, we will
investigate into the commit messages related to each topic to
see whether the content and strength of that topic correlate
well with real development activities.

For RQ2, we wish to evaluate the capability of our approach
of detecting novel topics at the time of their arrival. We will
select random samples of emerging topics from random time
slices and compare each topic with the aligned topic from
previous time. We will compare them from two aspects: (a)
exploring the content of two topics, and (b) investigating
into original messages related to each topic. Because only in
this way can we deeply understand the meaning of a topic,
otherwise, our understanding may be one-sided. If two topics
are obviously dissimilar with each other in both aspects, we
consider the topic at later time as a truly emerging topic.

For RQ3, our study will involve some participants from
school and/or industry. These participants will be divided into
three groups. They are assigned with a subset of commits
extracted from real systems. Their task is to comprehend the
development activities and their evolution reflected in commit
messages. One group is the experimental group that uses the
tool based on our proposed techniques i.e., their task will
be facilitated by providing both topic strength and content
evolution. The second group is the control group that uses
the tool only with the help of strength evolution [4], [10]. The
final group is the other control group that uses the tool only
with the help of content evolution [1]. Then, we compare the
time they spend in finishing the task and the quality of their
results.

V. CONCLUSION AND FUTURE WORK

Traditional topic evolution models were designed to pro-
duce either the strength evolution or content evolution of the
unstructured software repositories. In some cases, developers
may have the request to know not only the evolution of the
strength of one topic but also the evolution of detailed infor-
mation within it. In this paper, we proposed a novel approach
based on On-Line LDA to understand software evolution at
both two views, i.e., strength evolution and content evolution,
simultaneously. In addition, emerging topics of interest can
also be detected by On-Line LDA. Our future work will focus
on the implementation of our approach and several empirical
case studies will be conducted to evaluate the effectiveness of
our approach.
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